

Introduction

Mine surveying is of great significance in promoting and ensuring safety production, improving economic benefits, and rational development and utilization of mineral resources. However, mining surveys present a unique set of challenges due to the remote and rugged terrain of mining sites, as well as the potential hazards associated with working in and around active mining operations.

Traditional mining surveying techniques such as total stations and RTK are time-consuming and inefficient in operation, and surveyors are exposed to the hazardous environments, with risks of rockfalls, equipment malfunctions, and other dangers.

In recent years, the rapid development of unmanned aerial vehicle (UAV) LiDAR scanning technology, has provided new technical means for providing high-precision topographic maps and DEMs for mining exploration, monitoring and design.

Project Need

The survey area is about 2.2 square kilometers, with an average height difference of 40 meters. The owner requires topography description of interested area to define a management plan, the point cloud accuracy should be higher than 5cm, and needs to output multi-period earthwork volume, DEM, and contour lines.

Figure 1 Mining area overview

Solution

Apus drone LiDAR utilized in this project boasts a maximum range of 300m and weight of only 1kg. It incorporates a DJI SKYPORT that seamlessly integrates with DJI M300/M350 RTK UAVs, allowing for single sortie operation durations of up to 40 minutes.

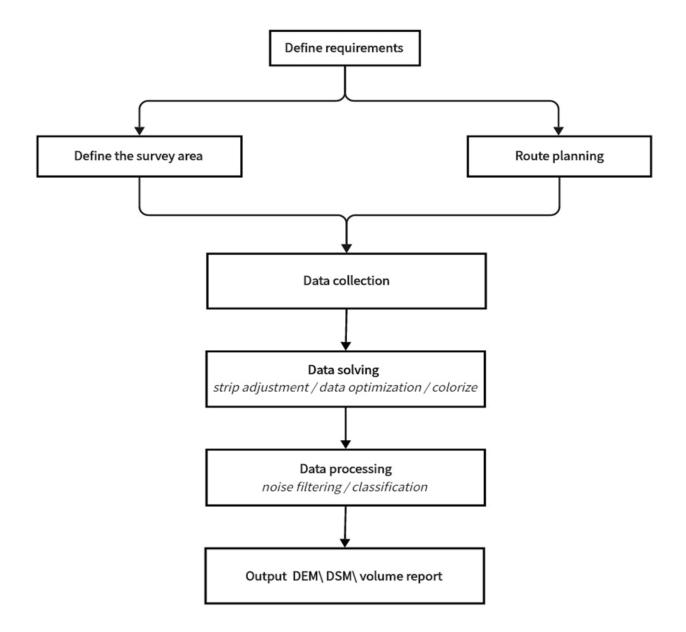
Figure 2 Apus with DJI M350

With a laser rate of 640,000 points per second (single return), the Apus offers simple and convenient operation through a one-button start feature. When paired with the Sat-LiDAR processing software, not only terrain data can be output quickly, volume reports can be exported through automatic classification and volume calculation, making it well-suited for high-precision and high-efficiency mining surveys and application.

Project Parameters

1. Equipment

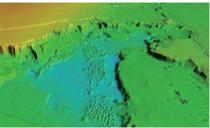
2. Software

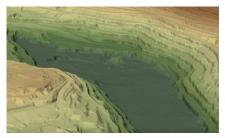

Sat-LiDAR & Satsurv

Specification

Apus UAV LiDAR Specification

	System Accuracy	5cm@100m		
	Range Accuracy	1cm@100m		
	Measuring Range	300m		
LiDAR Unit	Field of View(FOV)	360°(horizon)*40.3°(Vertical)		
		640,000 points/sec (single echo)		
	Data	1,280,000points/sec (dual-echo)		
		1,920,000points/sec (Triple-echo)		
POS Unit	Position Accuracy(pp)	Horizontal:0.01m; Vertical:0.02m;		
	Heading Accuracy(pp)	0.03°		
	Rolling/pitch Accuracy(pp)	0.006°		
Carra and Huit	Effective Pixel	26 Mega Pixel (6252*4168)		
Camera Unit —	Focal Length	16mm		
	Weight	1kg		
	Tanana ayah wa Danasa	-20°C∼+50°C (operation)		
	Temperature Range	-20°C∼+65°C(storage)		
Custom	Protection Class	IP64		
System - - -	Data Storage	1TB(SSD 512G+TF Card 512G)		
	Data Transmission Mode	TYPE-C, up to 160M/S		
	Mounting Interface	DJI SKYPORT		
	UAVS	Designed for DJI M300/M350		


Technical Route



Sat-LiDAR software can automatically solve the collected point cloud data, outputting high-precision color point clouds. By filtering the point cloud data, ground points and their terrain feature classification data in the mining area can be obtained, which can then be used to produce DEM, DSM, contour lines, and other results. Additionally, the software supports multi-phase volume calculation of the mine using TIN grid. It also includes features such as data accuracy inspection, strip adjustment, noise filtering, classification, and point cloud tiling processing.

Results

ol Point X/m	Control Point Y/m	Control Point Z/m	Precision dX/m	Precision dY/m	Precision dZ/m
		58.8425			-0.0169
		53.7607			0.0105
		53.2700			0.0046
		53.4967			-0.0234
		53.3277			0.0148
		53.5034			0.0245
		54.1536			0.0091
		54.9325			-0.0425
Mean/m:-0.00	24(Z)	N	Maximum/m:0.024	5(Z)	
1ean Square	Error/m:0.0214(Z)	N	Minimum/m:-0.042	5(Z)	

	MER-MI-DE IN HE OF Bushy					
arameter Setting						
First peroid point			ground points, las			
Second peroid point cloud						
Grid Size	3.000	n	Base height	9.00	п	
Pirst peroid maximum height difference Second peroid maximum height difference	3,17	n	First peroid maxinum diameter Second peroid maxinum diameter	1111		
2D perimeter	10.70	п	3D perimeter	10.00		
2D projected area	1000	m ²	3D surface area	STREET, SALE	m ²	
Cut area	200, 14	m²	Fill area	100	m ²	
Cut surface area	895.11	m ²	Fill surface area	18.	n ²	
Cut volume	234.0	m,	Fill volume	5.66	m3	
irst peroid mininum	4.00	n	First peroid maxinum height	16,100	п	
height Second peroid			Second peroid	0.00		

	Multi-pe	eriod	calculate result		
	161	H-0-10	Edit State		
Parameter Setting					
First peroid point cloud	To the Annual of Line				
Second peroid point cloud	20				
Grid Size	2.000	n	Base height	100	
Result					
First peroid maxinum height difference	70.646	n	First peroid maxinum diameter	80.00	
Second peroid maxinum height difference	3.19	n	Second peroid maxinum diameter	19.76	
2D perimeter	74, 97		3D perimeter	88.84	
2D projected area	200.00	m²	3D surface area	March 196	m²
Cut area	756.75	n²	Fill area	WEST 118	m²
Cut surface area	200.00	m²	Fill surface area	200.00	102
Out volume	100.00	m³	Fill volume	100 100	m³
First peroid mininum height	66.26	-	First peroid maxinum height	10.00	
Second peroid mininum height	80.00	n	Second peroid maxinum height	19.00	

Benefits

One of the key advantages of using UAV LiDAR for mining mapping is the ability to collect high-resolution data quickly and efficiently. UAV LiDAR, on the other hand, can capture detailed data from above in a fraction of the time, allowing for faster and more comprehensive mapping of mining sites.

Traditional surveying methods can be

time-consuming and labor-intensive, requiring ground-based equipment and personnel to cover large areas. By using drones to collect data from above, mining companies can avoid putting personnel at risk and minimize the impact on the surrounding environment.

Conclusion

Apus drone LiDAR solution can capture precise measurements of the terrain, including elevation, slope, and vegetation coverage, with centimeter accuracy. This level of detail is crucial for mining operations, as it allows for better planning, monitoring, and management of the site.