

Jarnbrotts Prastvag 2 SE-42147 - Vastra Frolunda Gothenburg, Sweden

Water Resources

PREFACE

The boundless ocean has surging power and profound beauty, we revere her, and we explore her. Light can only penetrate a few meters underwater, while sound waves propagate at a speed like 1500m/s in the water to unveil the water covering the earth for people. Over a hundred's years ago, people of wisdom invented sonar to emit sound waves. After a century of development, sonar technology has become more sophisticated and our exploration of water is growing rapidly!

We may not fully understand the ocean yet, but we see the widest range of real needs in marine and water resources. Large numbers of rivers and lakes face improper management, navigation between countries requires more and better ports and routes, and a large number of offshore projects such as windmills and fossil fuel energy system are waiting to be built.

To meet the challenges of water, we have launched the SatLab marine series products to make our contribution to the firm footings towards the water.

SATLAB MARINE SERIES PRODUCTS

CONTENTS

River Dis Measure

USV Bat of Efficie

ecision Position and	
g Receiver	02

	Fcho	Sounder	 04
equency	LCHO	Jounder	 04

• HydroScan

The Dual-frequency Side	
Scan Sonar Systems	06

ischarge	
ement System	08

HydroBoat-990

thymetry Solution	
ency and Durability	10

About GNSS Receiver

GNSS Receivers are the core product for satellite positioning. They convert signals from visible satellites into a position on earth. The amount of visible satellites is dependent on the number of constellations the receiver is compatible with, such as GPS, GLONASS, GALILEO, and BDS.

The Njord is a SatLab next-generation multi-GNSS, multi-frequency, position and heading receiver designed specifically for marine and construction applications with the capability of L-Band correction and multiple I/O interfaces for versatile data communication.

How to Implement Heading?

The Njord receiver is connected to two GNSS antennas for positioning and heading. The farther the distance between the two GNSS antennas, the higher the accuracy of the heading. The accuracy will not be improved all the time due to the increase in the distance; the maximum distance can be controlled at 10 meters. The satellite signals received by the primary antenna and the secondary antenna are slightly different. The primary antenna is mainly used for positioning, while the secondary antenna assists the primary antenna to provide heading information together.

Applications

- Marine Engineering Measurement
- Displacement Monitoring of Operating Platforms
- Navigation and Positioning
- Tide Level Monitoring

Features

- 1408-Channel Signal Tracking; GPS L1/L2/L5, GLONASS L1/L2, BDS B1/B2/B3, Galileo E1/E5 and L-Band Capability
- Convenient Front Panel Display and Configuration
- Multiple I/O Ports for Different Signals and Purposes Including NMEA-0183 and PPS
- Radio, Cellular Internet, Cables, and Other Kinds of Communication
- Benchmark PPP Service Provides Centimeter-Level Positioning at Sea.

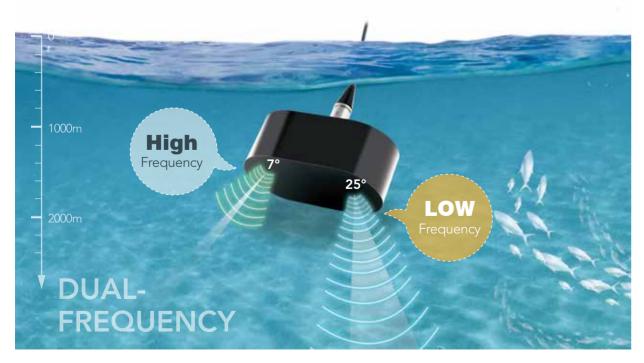
Specifications

System	CPU & OS	Cortex-A8, AM3358, Linux
System	Storage	8 GB Internal Storage, Support External SD Card
	Channel	1408
		BDS: B1/B2/B3 GPS: L1/L2/L5 GLONASS: L1/L2
	Signal Tracking	GALILEO: E1/E5 QZSS: L1/L2/L5 Support L-Band
	RTK Accuracy	H:± 8 mm + 1 ppm V:± 15 mm + 1 ppm
GNSS	Static Accuracy	H:± 2.5 mm + 0.5 ppm V:± 5 mm + 0.5 ppm
Performance	Autonomous	$H{:}\pm1.5m~(RMS)~V{:}\pm3~m~(RMS)$
	SBAS	H:±0.5 m (RMS) V: ± 0.85 m (RMS)
	PPP	H: \pm 5 cm (RMS) V: \pm 10 cm (RMS)
	Heading Accuracy	0.05° @ 4.0 m Antenna Separation
	Positioning Rate	20 Hz Max
	Message Type	RTCM2.x, RTCM3.x
		LTE:900/1800/1900/2100/2300/2500/2600 MHz
Internal Cellular	Operation Frequencies	WCDMA:850/900/1900/2100 MHz;
		GSM:900/1800 MHz
	Protocols	TRIMTALK450S, TRIMMARK III , TRANSEOT, SOUTH
Radio UHF	Frequency	410-470 MHz, -116 dBm
	Channels Power	116, Editable from 100 to 115
	Channels i Ower	2 W, 1 W, 0.5 W
	Bluetooth	2.4 GHz, 4.0/2.1+EDR
Interface	WIFI	2.4 GHz, 802.11 b/g/n
	Display	1.3 inch LED Display, 128*64
interiace	Buttons	Power and FN (Function)
	Indicators	LED for Satellites, Data, and Power
	Web UI	LAN IP: 192.168.20.1

About Echo Sounder

For many small waters and shallow waters, the single beam echo sounder (SBES) survey method is still the best choice. From fish finders to bathymetric instruments, SBES uses the simplest principle - by calculating the sounder velocity and the interval between pings and echoes to get the depth of water, the simplest installation method, the most affordable price, and occupies a place in the hydrographic survey.

Why Dual-frequency?


SBES has a single frequency and dual frequency. Most echo sounders have a high frequency of about 200kHz with a small beam angle and high accuracy to meet the water area between 100 and 200 meters. The ES-224 is equipped with a larger 24kHz&200kHz dual-frequency transducer. The 20kHz low-frequency signal is more penetrating and can penetrate further through the sediment and detect a harder bottom surface, with a maximum depth of up to 2000 meters.

The ES-224 transmits both high-frequency and low-frequency signals to meet all inland river and lake bathymetry as well as marine measurements up to 2000 meters.

Applications

- Tracking of the Seabed
- Sediment Measurement for Dredging

- Turbid Water with High Sand Content
- Measurement at High Speed

Features D Rugged Industrial Dual-frequency Platform Multiple I/O Windows OS Interfaces 17-inch Large Tempered CE and EN 60945 Glass Screen Certification The Full-featured SLHydro Frequency Span <u>I</u>Mu Available for Sounder Software Special Projects

Specifications

128

128 GB Internal

Data Storage

Frequency	High: 200kHz	Low: 24kHz	
Maximum Transmitting Power	400W@200kHz	1200W@24kHz	
Depth Range	0.15~300m/1.0~900 ft.@200kHz		
	0.8~2000m/2.4	~6000 ft.@24kHz	
Depth Range	0.01m/0.10) ft @200kHz	
	0.10m/0.30 ft @24kHz		
Ping Rate	Maximum 30Hz		
Storage	128GB SSD		
Interfaces	RS-232*3, USB*4, Power Port*1, Transducer Port*1, VGA*1		
Operating Temperature	-20 °C ~70 °C		
Weight	9.5 kg(20lbs)		

SatLab Software

 \gg

About Side Scan Sonar

Side scan sonar also referred to as side-looking sonar and side-imaging sonar is a type of sonar system that is usually towed aft of a survey vessel and emits sonar pulses to the water bottom. Side scan sonar is used to effectively create images of large areas under the water. The sound frequencies used in side scan sonar usually range from 100 to 500 kHz; higher frequencies yield better resolution but less range. Side-scan image interpretation is also a necessary skill when using side-scan.

How Is Interpretation Done?

As with all acoustic sonar, the side scan sonar only measures the echoes of objects that reflect sound to the side scan sonar transducer. Therefore, the side scan image is highlighted when the surface of the rock is at right angles to the sonar, and some smaller targets are completely obscured by the rough seafloor texture. Metals, boulders, and gravels are very effective at reflecting acoustic pulses (high backscatter). Finer sediments, such as clay and silt, on the other hand, do not reflect sound very well (low backscatter). Strong reflectors produce strong echoes, while weak reflectors produce weak echoes. Knowing these properties, you can interpret the composition of the seafloor and any objects that may be lying on it based on the intensity of the echoes on the side scan image.

Applications

- Hydrographic Surveys
- Search & Rescue & Found
- Geological Surveying and Mapping
- Cable Route & Pipeline Surveys

- Channel/Clearance Surveys
- Water Construction Inspections
- Environmental Habitat Surveys

Multiple Frequency	Available	Real-time CW & CHIRP	(رچَه ا	Multiple Internal Senso
Ultra Small Beam A	ngle	Strong and Robust Towfish	\bigotimes	Meets IHO & NOAA Survey Standard
pecifications				
Model	1400	4900		900P
Frequency	100kHz & 400kHz	400kHz & 900kHz		900kHz
Pulse Width	20~1000µs (CW), 1ms~4ms (LFM)	20~1000µs (CW), 1ms~4ms (LFM)		20~500µs(CW) 0.5ms~2ms(LFM)
Signal Types	CW/LFM	CW/LFM	CW/LFM	
Horizontal Beam Angle	0.6°@100kHz, 0.2°@400kHz	0.2°@400kHz, 0.2°@900kHz		0.3°
Vertical Beam Angle	45°	45°		45°
Depression Angle	10°, 15°, 20° Optional	10°, 15°, 20° Optiona	1	15°
Along Track Resolution	0.01h@100kHz 0.003h@400kHz	0.003h@400kHz 0.003h@900kHz		0.005h@900kHz
Across Track Resolution	1.25cm	1.25cm		1.25cm
Maximum Range	450m@100kHz, 150m@400kHz	150m@400kHz, 75m@900kHz		45m
Work Speed	2-6kn	2-6kn		2-6kn
Depth Rating	1000m	1000m		300m
Dimension	105mm*1300mm	105mm*1170mm		55mm*285mm
Weight	30kg (316#Stainless Stee	el) 26kg (316#Stainless Ste	eel)	1kg
Power	MAX 40W	MAX 30W		9-18V DC, 15W
Inner Sensor	Attitude, Heading, Pressure, Depth Senso	Attitude, Heading, r Pressure, Depth Sens	or	\
Cable	Kevlar Cable, Standarc 50m (250m Optional)	Kevlar Cable, Standar 50m (250m optional		Kevlar Cable, Standard 2m (Optional)
SLHydroSSS		NMEA-0183 Input; OTSS, XTF, Ou	tput: Wind	ows

Real-time underwater imaging, data correction, boat setting.

About ADCP

Water flow can be measured in many different ways, such as rotating-element current-meter, float run method, slope-area method, and now we use acoustic Doppler devices to quickly and accurately measure water flow.

Acoustic Doppler devices use sound waves and the Doppler effect to measure velocity fluctuations underwater. The main Doppler techniques used in ADCP are water tracking - measuring the movement of the water relative to the ADCP, and bottom tracking - measuring the movement of the river bottom or seabed relative to the ADCP.

What Platforms Are Needed?

The ADCP is usually fixed underwater or mounted on a survey vessel or USV. ADCPs that are bottom-mounted need an anchor to keep them on the bottom, batteries, and an internal data logger. Vessel-mounted instruments need a vessel with power, a shipboard computer to receive the data, and a GPS navigation system (so the ship's movements can be subtracted from the current data). ADCPs have no external read-out, so the data must be stored and manipulated on a computer. Software programs designed to work with ADCP data are needed. We supply vessel-mounted HydroFlow ADCP and self-developed SLHydroFlow software to get your job done!

Applications

- River Hydrology
- Irrigation Monitoring
- Environmental Impact Studies
- Fisheries Studies
- Flood Warning
- Circulation Studies

Features

(Multiple Built-in Sensors	Long Profiling Range Multiple Cells	
High Precision Discharge Measurement	Easy to Use Software	
Specifications		
Model	HydroFlow 600	HydroFlow 1200
System Frequency	600kHz	1200kHz
Transducer Type		Piston
Beam	4 Beams Janus, 20°	5 Beams Janus, 20°
Profiling Range (Distance)	0.4~80m	0.15~35m
Depth Range	0.7~120m	0.15~50m
Velocity Range	=±5m/s typical, ±20m/s maximum	
Accuracy	+ 0	.25%±0.2cm/s
Resolution		1 mm/s
Cell Size	0.25~4m	0.06~2m
Quantity		1~260
Internal Sensors Temperature: Range/Accuracy/Resolution	-10°C ~ +60°	°C /±0.1°C /0.001°C
Compass: Range/Accuracy/Resolution	0°~360)° / ±0.5° / 0.001°
Motion Sensor: Range/Accuracy/Resolution	±30° / ±0.2° / 0.001°	
Communication Protocol	RS-232, RS-422, WIFI	
Power Input	9~18VDC (standard 12V)	
Power Consumption	3.5W (average), 0.5W (sleep), 30W (peak)	
Working Temperature	-	5°℃~+45°℃
Storage Temperature		20° C ~+60° C
Float Configuration	Three	e Hulls (trimaran)
Material	P	olyethylene

SatLab Software

 \gg

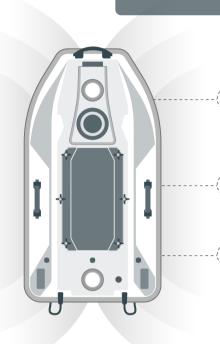
SLHydroFlow

HydroBoat-990USV USV Bathymetry Solution of Efficiency and Durability

About USV

USVs (Unmanned Surface Vehicles) are widely used in hydrographic surveys, environmental monitoring, and water search and rescue. The most used and developed field of USV is hydrographic surveying. Hydrographic surveys face many uncharted waters, often require long navigation times, and have high demands on accuracy. These have higher demands on the quality of surveyors and challenge the safety and health of surveyors.

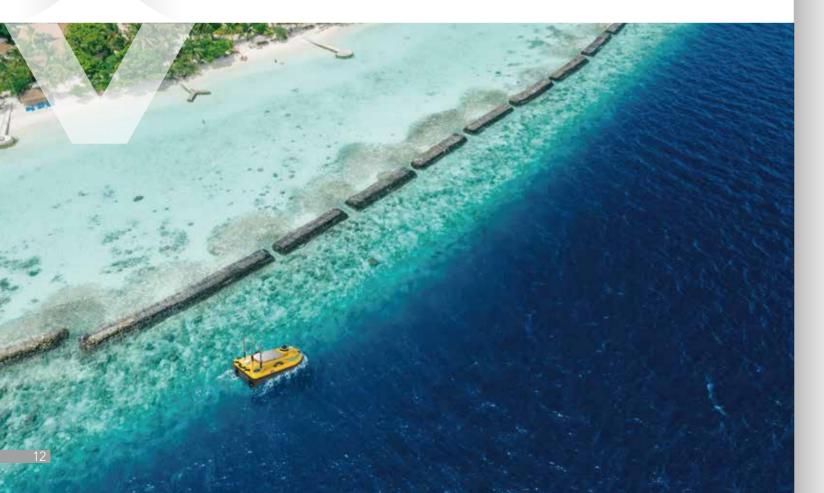
The hydrographic survey USV combines various complex systems to give the user the simplest mode of operation. With advanced hull design, USV combines the GNSS system, bathymetry system, communication system, autonomous navigation system, HydroBoat-990 ensures both efficient surveys and safe navigation.



UNMANNED VEHICLES

HydroBoat-990USV USV Bathymetry Solution of Efficiency and Durability

-HydroBoat-990 Solution



Solution of efficiency and durability

 $\langle 1 \rangle$ Advanced pilot system for auto and manual mode, safeguarded by radar avoidance and hovering system. Stable hull design for standing waves, IP67 wind-resistant, and rugged body with collision durability.

 $\langle 2 \rangle$ One key setup with just a powerful controller, and the auto-connection makes it a direct-to-go system with a 2km operation range.

(3) Advanced Android app for hydrography and pilot control, making the task easier to be done on the smart controller.

Usability

System Safety/Durability

- Double Hull
- Avoid Collision with Obstacles
- Automatic reversing in the shallows
- Anti-collision and wear-resisting
- IP65
- Verified and Certified by CE
- Battery Management System
- Satellite and Communication Light
- Video Patrol

Specifications

	Hull Dimension	998mm X 450mm		
Physical	Material	Carbon Fiber		
	Anti-wave & Wind	3rd Wind Level and 2nd Wave Level		
	Indicator Light	Two-color Light		
	Video	360° Omnidirectional Video		
	Power	40Ah /29.6V, 4 Hours @ 2 m/s		
	Anti-collision Sensor	Detection Distance 20 Meters		
	Auto-return	Auto-return While Low Battery or Signal Loss		
Communication	Data Communication	Standard: Network Bridge for 2 km, RF Point to Point in Real-time Optional: No Distance Limit		
	Navigation Mode	Manual or Auto-Pilot		
	Data Formats	RTCM3.x, CMR, RINEX 3.02, NMEA-0183, NTRIP Client, NTRIP Caste		
	System	Android		
Controller	Software	SLHydro Sounder for Android Version		
	Display	Real-time Video Display and Echogram Display		
	Satellite System	BDS B1/B2, GPS L1/L2, GLONASS L1/L2, Galileo E1/E5, SBAS, QZSS		
	Channel	336		
	SBAS Positioning	Horizontal: 0.5 m		
Positioning	Accuracy	Vertical: 0.85 m		
	RTK Positioning	Horizontal: ±8 mm + 1 ppm		
	Accuracy	Vertical: ±15 mm + 1 ppm		
	Heading Accuracy	0.2° @1 m Baseline		
	Sounding Range	0.15 m to 200 m		
SBES	Sounding Accuracy	±0.01 m + 0.1% x D (D is the Depth of Water)		
	Frequency	200 kHz		

- Time-saving Turn on and Survey • Communicate without
- Base Station
- Operate in One App Only
- Integrate with GNSS
- and SBES
- Stable Hovering

Data Reliability

- Professional Android Bathymetric Software
- High Precision Positioning
- High Precision Echo Sounder
- IHO Standard